Example 7 - Refining a triangulation

We have seen how the standard meshes can be uniformly refined to finer resolution. The routines used for this task are available to the stripy user for non-uniform refinement as well.

Notebook contents

import stripy as stripy
import numpy as np

Uniform meshes by refinement

The refinement_level parameter of the stripy meshes makes repeated loops determining the bisection points of all the existing edges in the triangulation and then creating a new triangulation that includes these points and the original ones. These refinement operations can also be used for non-uniform refinement.

ico0 = stripy.spherical_meshes.icosahedral_mesh(refinement_levels=0)
ico1 = stripy.spherical_meshes.icosahedral_mesh(refinement_levels=1)
ico2 = stripy.spherical_meshes.icosahedral_mesh(refinement_levels=2)
ico3 = stripy.spherical_meshes.icosahedral_mesh(refinement_levels=3)
ico4 = stripy.spherical_meshes.icosahedral_mesh(refinement_levels=4)
ico5 = stripy.spherical_meshes.icosahedral_mesh(refinement_levels=5)
ico6 = stripy.spherical_meshes.icosahedral_mesh(refinement_levels=6)
ico7 = stripy.spherical_meshes.icosahedral_mesh(refinement_levels=7)

print("Size of mesh - 1  {}".format(ico1.points.shape[0]))
print("Size of mesh - 2  {}".format(ico2.points.shape[0]))
print("Size of mesh - 3  {}".format(ico3.points.shape[0]))
print("Size of mesh - 4  {}".format(ico4.points.shape[0]))
print("Size of mesh - 5  {}".format(ico5.points.shape[0]))
print("Size of mesh - 6  {}".format(ico6.points.shape[0]))
print("Size of mesh - 7  {}".format(ico7.points.shape[0]))
Size of mesh - 1  42
Size of mesh - 2  162
Size of mesh - 3  642
Size of mesh - 4  2562
Size of mesh - 5  10242
Size of mesh - 6  40962
Size of mesh - 7  163842

Refinement strategies

Five refinement strategies:

  • Bisect all segments connected to a given node

  • Refine all triangles connected to a given node by adding a point at the centroid or bisecting all edges

  • Refune a given triangle by adding a point at the centroid or bisecting all edges

These are provided as follows:

mlons, mlats = ico3.midpoint_refine_triangulation_by_vertices(vertices=[1,2,3,4,5,6,7,8,9,10])
ico3mv = stripy.sTriangulation(mlons, mlats)

mlons, mlats = ico3.edge_refine_triangulation_by_vertices(vertices=[1,2,3,4,5,6,7,8,9,10])
ico3ev = stripy.sTriangulation(mlons, mlats)

mlons, mlats = ico3.centroid_refine_triangulation_by_vertices(vertices=[1,2,3,4,5,6,7,8,9,10])
ico3cv = stripy.sTriangulation(mlons, mlats)

mlons, mlats = ico3.edge_refine_triangulation_by_triangles(triangles=[1,2,3,4,5,6,7,8,9,10])
ico3et = stripy.sTriangulation(mlons, mlats)

mlons, mlats = ico3.centroid_refine_triangulation_by_triangles(triangles=[1,2,3,4,5,6,7,8,9,10])
ico3ct = stripy.sTriangulation(mlons, mlats)


print (ico3mv.npoints, ico3mv.simplices.shape[0])
print (ico3ev.npoints, ico3ev.simplices.shape[0])
print (ico3cv.npoints, ico3cv.simplices.shape[0])
print (ico3et.npoints, ico3et.simplices.shape[0])
print (ico3ct.npoints, ico3ct.simplices.shape[0])
692 1380
742 1480
692 1380
664 1324
652 1300

Visualisation of refinement strategies

import matplotlib.pyplot as plt

%matplotlib inline

import cartopy
import cartopy.crs as ccrs

def mesh_fig(mesh, meshR, name):

    fig = plt.figure(figsize=(10, 10), facecolor="none")
    ax  = plt.subplot(111, projection=ccrs.Orthographic(central_longitude=0.0, central_latitude=0.0, globe=None))
    ax.coastlines(color="lightgrey")
    ax.set_global()

    generator = mesh
    refined   = meshR

    lons0 = np.degrees(generator.lons)
    lats0 = np.degrees(generator.lats)

    lonsR = np.degrees(refined.lons)
    latsR = np.degrees(refined.lats)

    lst = refined.lst
    lptr = refined.lptr


    ax.scatter(lons0, lats0, color="Red",
                marker="o", s=150.0, transform=ccrs.PlateCarree())

    ax.scatter(lonsR, latsR, color="DarkBlue",
                marker="o", s=50.0, transform=ccrs.PlateCarree())


    segs = refined.identify_segments()

    for s1, s2 in segs:
        ax.plot( [lonsR[s1], lonsR[s2]],
                 [latsR[s1], latsR[s2]], 
                 linewidth=0.5, color="black", transform=ccrs.Geodetic())

    fig.savefig(name, dpi=250, transparent=True)
    
    return


mesh_fig(ico3,        ico3mv,     "EdgeByVertex1to10" )
mesh_fig(ico3,        ico3ev,     "EdgeByVertexT1to10" )
mesh_fig(ico3,        ico3cv,     "CentroidByVertexT1to10" )
mesh_fig(ico3,        ico3et,     "EdgeByTriangle1to10" )
mesh_fig(ico3,        ico3ct,     "CentroidByTriangle1to10" )
../../_images/Ex7-Refinement-of-Triangulations_7_01.png ../../_images/Ex7-Refinement-of-Triangulations_7_11.png ../../_images/Ex7-Refinement-of-Triangulations_7_21.png ../../_images/Ex7-Refinement-of-Triangulations_7_31.png ../../_images/Ex7-Refinement-of-Triangulations_7_41.png

Targetted refinement

Here we refine a triangulation to a specific criterion - resolving two points in distinct triangles or with distinct nearest neighbour vertices.

points = np.array([[ 0.03, 0.035], [0.05, 0.055]]).T
triangulations = [ico1]
nearest, distances = triangulations[-1].nearest_vertex(points[:,0], points[:,1])

max_depth = 15

while nearest[0] == nearest[1] and max_depth > 0:

    lons, lats = triangulations[-1].centroid_refine_triangulation_by_vertices(vertices=nearest[0])
    new_triangulation = stripy.sTriangulation(lons, lats)
    nearest, distances = new_triangulation.nearest_vertex(points[:,0], points[:,1])
    triangulations.append(new_triangulation)
    
    max_depth -= 1

print ("refinement_steps =", len(triangulations))

centroid_triangulations = triangulations[:]
refinement_steps = 5
triangulations = [ico1]
nearest, distances = triangulations[-1].nearest_vertex(points[:,0], points[:,1])

max_depth = 15

while nearest[0] == nearest[1] and max_depth > 0:

    lons, lats = triangulations[-1].edge_refine_triangulation_by_vertices(vertices=nearest[0])
    new_triangulation = stripy.sTriangulation(lons, lats)
    nearest, distances = new_triangulation.nearest_vertex(points[:,0], points[:,1])
    triangulations.append(new_triangulation)
    
    max_depth -= 1

print ("refinement_steps =", len(triangulations))

edge_triangulations = triangulations[:]
refinement_steps = 6
triangulations = [ico1]

in_triangle = triangulations[-1].containing_triangle(points[:,0], points[:,1])

max_depth = 100

while in_triangle[0] == in_triangle[1] and max_depth > 0:

    lons, lats = triangulations[-1].edge_refine_triangulation_by_triangles(in_triangle[0])
    new_triangulation = stripy.sTriangulation(lons, lats)
    in_triangle = new_triangulation.containing_triangle(points[:,0], points[:,1])
    triangulations.append(new_triangulation)
    
    print (in_triangle)


    
    if in_triangle.shape[0] == 0:
        break
    
    max_depth -= 1

print ("refinement_steps =", len(triangulations))

edge_t_triangulations = triangulations[:]
[85 85]
[90 90]
[92 92]
[102 102]
[104 104]
[111 106]
refinement_steps = 7
triangulations = [ico1]

in_triangle = triangulations[-1].containing_triangle(points[:,0], points[:,1])

max_depth = 100

while in_triangle[0] == in_triangle[1] and max_depth > 0:

    lons, lats = triangulations[-1].centroid_refine_triangulation_by_triangles(in_triangle[0])
    new_triangulation = stripy.sTriangulation(lons, lats)
    in_triangle = new_triangulation.containing_triangle(points[:,0], points[:,1])
    triangulations.append(new_triangulation)
    
    print (in_triangle)
    
    if in_triangle.shape[0] == 0:
        break
    
    max_depth -= 1

print ("refinement_steps =", len(triangulations))

centroid_t_triangulations = triangulations[:]
[63 63]
[70 70]
[85 85]
[64 64]
[87 87]
[91 91]
[92 92]
[92 92]
[96 96]
[99 97]
refinement_steps = 11

Visualisation of targetted refinement

import k3d


## The four different triangulation strategies

t = [ edge_triangulations[-1],
      edge_t_triangulations[-1],
      centroid_triangulations[-1],
      centroid_t_triangulations[-1] ]

plot = k3d.plot(camera_auto_fit=False, grid_visible=False, 
                menu_visibility=True, axes_helper=False )


mesh_viewer = []
wire_viewer = []


for i in range(0,4):
    
    
    indices = t[i].simplices.astype(np.uint32)
    points  = np.column_stack(t[i].points.T).astype(np.float32)


    mesh_viewer.append(k3d.mesh(points, indices, wireframe=False, 
                   color=0x99AABB, 
                   name="mesh viewer {}".format(i+1),
                   flat_shading=True, opacity=1.0  ))

    wire_viewer.append(k3d.mesh(points, indices, wireframe=True, 
                   color=0x002244, 
                   name="wire frame viewer {}".format(i+1),
                   flat_shading=True, opacity=1.0  ))

    plot += mesh_viewer[i]
    plot += wire_viewer[i]
    

## This helps to manage the wireframe / transparency


indices = ico3.simplices.astype(np.uint32)
points  = np.column_stack(ico3.points.T).astype(np.float32)


background = k3d.mesh(points*0.9, indices, wireframe=False, 
                   color=0xBBBBBB, opacity=1.0, flat_shading=False  )

plot += background
plot.display()

## ## ## 

from ipywidgets import interact, interactive
import ipywidgets as widgets

choices = {  "edge triangulation": 0,
             "edge t triangulation": 1, 
             "centroid triangulation": 2, 
             "centroid t triangulation": 3  }

@interact(choice=choices.keys())
def chooser(choice):

    for i in range(0,4):
        mesh_viewer[i].visible = False
        wire_viewer[i].visible = False

    mesh_viewer[choices[choice]].visible = True
    wire_viewer[choices[choice]].visible = True
    
    return 
import matplotlib.pyplot as plt

%matplotlib inline

import cartopy
import cartopy.crs as ccrs

def mesh_fig(mesh, meshR, name):

    fig = plt.figure(figsize=(10, 10), facecolor="none")
    ax  = plt.subplot(111, projection=ccrs.Orthographic(central_longitude=0.0, central_latitude=0.0, globe=None))
    ax.coastlines(color="lightgrey")
    ax.set_global()

    generator = mesh
    refined   = meshR

    lons0 = np.degrees(generator.lons)
    lats0 = np.degrees(generator.lats)

    lonsR = np.degrees(refined.lons)
    latsR = np.degrees(refined.lats)


    ax.scatter(lons0, lats0, color="Red",
                marker="o", s=150.0, transform=ccrs.PlateCarree())

    ax.scatter(lonsR, latsR, color="DarkBlue",
                marker="o", s=50.0, transform=ccrs.PlateCarree())

    ax.scatter(np.degrees(points[:,0]), np.degrees(points[:,1]), marker="s", s=50, 
               color="#885500", transform=ccrs.PlateCarree())

    segs = refined.identify_segments()

    for s1, s2 in segs:
        ax.plot( [lonsR[s1], lonsR[s2]],
                 [latsR[s1], latsR[s2]], 
                 linewidth=0.5, color="black", transform=ccrs.Geodetic())

    fig.savefig(name, dpi=250, transparent=True)
    
    return



mesh_fig(edge_triangulations[0],        edge_triangulations[-1],     "EdgeByVertex" )

T = edge_triangulations[-1]
E = np.array(T.edge_lengths()).T
A = np.array(T.areas()).T
equant = np.max(E, axis=1) / np.min(E, axis=1)
size_ratio = np.sqrt(np.max(A) / np.min(A))
print ("EBV", T.simplices.shape[0], equant.max(), equant.min(), size_ratio)

mesh_fig(edge_t_triangulations[0],      edge_t_triangulations[-1],     "EdgeByTriangle" )


T = edge_t_triangulations[-1]
E = np.array(T.edge_lengths()).T
A = np.array(T.areas()).T
equant = np.max(E, axis=1) / np.min(E, axis=1)
size_ratio = np.sqrt(np.max(A) / np.min(A))
print ("EBT", T.simplices.shape[0], equant.max(), equant.min(), size_ratio)


mesh_fig(centroid_triangulations[0],    centroid_triangulations[-1],   "CentroidByVertex" )

T = centroid_triangulations[-1]
E = np.array(T.edge_lengths()).T
A = np.array(T.areas()).T
equant = np.max(E, axis=1) / np.min(E, axis=1)
size_ratio = np.sqrt(np.max(A) / np.min(A))
print ("CBV", T.simplices.shape[0], equant.max(), equant.min(), size_ratio)



mesh_fig(centroid_t_triangulations[0],  centroid_t_triangulations[-1], "CentroidByTriangle" )

T = centroid_t_triangulations[-1]
E = np.array(T.edge_lengths()).T
A = np.array(T.areas()).T
equant = np.max(E, axis=1) / np.min(E, axis=1)
size_ratio = np.sqrt(np.max(A) / np.min(A))
print ("CBT", T.simplices.shape[0], equant.max(), equant.min(), size_ratio)
EBV 200 4.540084060033664 1.0 35.2792941304391
EBT 116 32.054115598497226 1.0 69.26762587558879
CBV 126 2.89224779940056 1.0 11.691555217725488
CBT 100 3.4282922914052634 1.0 32.74941535800478
../../_images/Ex7-Refinement-of-Triangulations_16_4.png ../../_images/Ex7-Refinement-of-Triangulations_16_5.png ../../_images/Ex7-Refinement-of-Triangulations_16_6.png ../../_images/Ex7-Refinement-of-Triangulations_16_7.png

The next example is Ex8-Spline-Tension