Examples with General Mesh variable manipulation#
We introduce the notion of an IndexSwarmVariable
which automatically generates masks for a swarm
variable that consists of discrete level values (integers).
For a variable \(M\), the mask variables are \(\left\{ M^0, M^1, M^2 \ldots M^N \right\}\) where \(N\) is the number of indices (e.g. material types) on the variable. This value must be defined in advance.
The masks are orthogonal in the sense that \(M^i * M^j = 0\) if \(i \ne j\), and they are complete in the sense that \(\sum_i M^i = 1\) at all points.
The masks are implemented as continuous mesh variables (the user can specify the interpolation order) and so they are also differentiable (once).
# to fix trame issue
import nest_asyncio
nest_asyncio.apply()
import petsc4py
from petsc4py import PETSc
import underworld3 as uw
from underworld3.systems import Stokes
from underworld3 import function
import numpy as np
import sympy
meshbox = uw.meshing.UnstructuredSimplexBox(
minCoords=(0.0, 0.0), maxCoords=(1.0, 1.0), cellSize=1.0 / 32.0
)
meshbox.dm.view()
import sympy
# Some useful coordinate stuff
x, y = meshbox.CoordinateSystem.X
v_soln = uw.discretisation.MeshVariable("U", meshbox, meshbox.dim, degree=2)
p_soln = uw.discretisation.MeshVariable("P", meshbox, 1, degree=1)
sympy.diff(v_soln.sym, x)
swarm = uw.swarm.Swarm(mesh=meshbox)
material = uw.swarm.IndexSwarmVariable("M", swarm, indices=4)
swarm.populate(fill_param=5)
with swarm.access(material):
material.data[...] = 0
for i in range(50):
cx, cy, r = np.random.random(3)
m = np.random.randint(1, 4)
r = 0.025 + r * 0.025
inside = (swarm.data[:, 0] - cx) ** 2 + (swarm.data[:, 1] - cy) ** 2 < r**2
material.data[inside] = m
material.sym.diff(meshbox.CoordinateSystem.X)
material.sym.jacobian(meshbox.X).T
meshbox.vector.jacobian(material.sym).T
v_soln.sym.jacobian(meshbox.CoordinateSystem.X)
mat_density = np.array([1, 10, 100, 1000])
density = (
mat_density[0] * material.sym[0]
+ mat_density[1] * material.sym[1]
+ mat_density[2] * material.sym[2]
+ mat_density[3] * material.sym[3]
)
mat_viscosity = np.array([1, 10, 100, 1000])
viscosity = (
mat_viscosity[0] * material.sym[0]
+ mat_viscosity[1] * material.sym[1]
+ mat_viscosity[2] * material.sym[2]
+ mat_viscosity[3] * material.sym[3]
)
import numpy as np
import pyvista as pv
import vtk
pv.global_theme.background = "white"
pv.global_theme.window_size = [750, 750]
pv.global_theme.antialiasing = True
pv.global_theme.jupyter_backend = "trame"
pv.global_theme.smooth_shading = True
meshbox.vtk("tmp_box.vtk")
pvmesh = pv.read("tmp_box.vtk")
with swarm.access():
points = np.zeros((swarm.data.shape[0], 3))
points[:, 0] = swarm.data[:, 0]
points[:, 1] = swarm.data[:, 1]
points[:, 2] = 0.0
point_cloud = pv.PolyData(points)
with meshbox.access():
pvmesh.point_data["M0"] = uw.function.evaluate(material.sym[0], meshbox.data)
pvmesh.point_data["M1"] = uw.function.evaluate(material.sym[1], meshbox.data)
pvmesh.point_data["M2"] = uw.function.evaluate(material.sym[2], meshbox.data)
pvmesh.point_data["M3"] = uw.function.evaluate(material.sym[3], meshbox.data)
pvmesh.point_data["M"] = (
1.0 * pvmesh.point_data["M1"]
+ 2.0 * pvmesh.point_data["M2"]
+ 3.0 * pvmesh.point_data["M3"]
)
pvmesh.point_data["rho"] = uw.function.evaluate(density, meshbox.data)
pvmesh.point_data["visc"] = uw.function.evaluate(sympy.log(viscosity), meshbox.data)
with swarm.access():
point_cloud.point_data["M"] = material.data.copy()
pl = pv.Plotter(notebook=True)
# pl.add_points(point_cloud, color="Black",
# render_points_as_spheres=False,
# point_size=2.5, opacity=0.75)
pl.add_mesh(
pvmesh,
cmap="coolwarm",
edge_color="Black",
show_edges=False,
scalars="visc",
use_transparency=False,
opacity=0.95,
)
# pl.add_mesh(pvmesh, cmap="coolwarm", edge_color="Black", show_edges=True, scalars="M1",
# use_transparency=False, opacity=1.0)
pl.show(cpos="xy")
ad = uw.systems.AdvDiffusionSwarm(meshbox, t_soln, T1.fn, degree=3, projection=True)
ad._u_star_projector.smoothing = 0.0
ad.add_dirichlet_bc(1.0, "Bottom")
ad.add_dirichlet_bc(0.0, "Top")
init_t = 0.01 * sympy.sin(5.0 * x) * sympy.sin(np.pi * y) + (1.0 - y)
with meshbox.access(t_0, t_soln):
t_0.data[...] = uw.function.evaluate(init_t, t_0.coords).reshape(-1, 1)
t_soln.data[...] = t_0.data[...]
with swarm.access(T1):
T1.data[...] = uw.function.evaluate(
init_t, swarm.particle_coordinates.data
).reshape(-1, 1)
# Create Stokes object
stokes = Stokes(
meshbox,
velocityField=v_soln,
pressureField=p_soln,
u_degree=v_soln.degree,
p_degree=p_soln.degree,
solver_name="stokes",
verbose=False,
)
# Set solve options here (or remove default values
# stokes.petsc_options.getAll()
stokes.petsc_options.delValue("ksp_monitor")
# Constant visc
stokes.viscosity = 1.0
# Velocity boundary conditions
stokes.add_dirichlet_bc((0.0,), "Left", (0,))
stokes.add_dirichlet_bc((0.0,), "Right", (0,))
stokes.add_dirichlet_bc((0.0,), "Top", (1,))
stokes.add_dirichlet_bc((0.0,), "Bottom", (1,))
buoyancy_force = 1.0e6 * t_soln.fn
stokes.bodyforce = meshbox.N.j * buoyancy_force
# check the stokes solve is set up and that it converges
stokes.solve()
# check the projection
if uw.mpi.size == 1 and ad.projection:
import numpy as np
import pyvista as pv
import vtk
pv.global_theme.background = "white"
pv.global_theme.window_size = [750, 250]
pv.global_theme.antialiasing = True
pv.global_theme.jupyter_backend = "trame"
pv.global_theme.smooth_shading = True
pv.start_xvfb()
pvmesh = meshbox.mesh2pyvista(elementType=vtk.VTK_TRIANGLE)
with meshbox.access():
usol = stokes.u.data.copy()
pvmesh.point_data["mT1"] = uw.function.evaluate(
ad._u_star_projected.fn, meshbox.data
)
pvmesh.point_data["T1"] = uw.function.evaluate(T1.fn, meshbox.data)
pvmesh.point_data["dT1"] = uw.function.evaluate(
T1.fn - ad._u_star_projected.fn, meshbox.data
)
arrow_loc = np.zeros((stokes.u.coords.shape[0], 3))
arrow_loc[:, 0:2] = stokes.u.coords[...]
arrow_length = np.zeros((stokes.u.coords.shape[0], 3))
arrow_length[:, 0:2] = usol[...]
pl = pv.Plotter()
# pl.add_mesh(pvmesh,'Black', 'wireframe')
pl.add_mesh(
pvmesh,
cmap="coolwarm",
edge_color="Black",
show_edges=True,
scalars="dT1",
use_transparency=False,
opacity=0.5,
)
# pl.add_arrows(arrow_loc, arrow_length, mag=1.0e-4, opacity=0.5)
# pl.add_arrows(arrow_loc2, arrow_length2, mag=1.0e-1)
# pl.add_points(pdata)
pl.show(cpos="xy")
def plot_T_mesh(filename):
if uw.mpi.size == 1:
import numpy as np
import pyvista as pv
import vtk
pv.global_theme.background = "white"
pv.global_theme.window_size = [750, 750]
pv.global_theme.antialiasing = True
pv.global_theme.jupyter_backend = "trame"
pv.global_theme.smooth_shading = False
pv.global_theme.camera["viewup"] = [0.0, 1.0, 0.0]
pv.global_theme.camera["position"] = [0.0, 0.0, 5.0]
pvmesh = meshbox.mesh2pyvista(elementType=vtk.VTK_TRIANGLE)
points = np.zeros((t_soln.coords.shape[0], 3))
points[:, 0] = t_soln.coords[:, 0]
points[:, 1] = t_soln.coords[:, 1]
point_cloud = pv.PolyData(points)
with meshbox.access():
point_cloud.point_data["T"] = t_soln.data.copy()
with swarm.access():
points = np.zeros((swarm.data.shape[0], 3))
points[:, 0] = swarm.data[:, 0]
points[:, 1] = swarm.data[:, 1]
swarm_point_cloud = pv.PolyData(points)
with swarm.access():
swarm_point_cloud.point_data["T1"] = T1.data.copy()
with meshbox.access():
usol = stokes.u.data.copy()
pvmesh.point_data["T"] = uw.function.evaluate(t_soln.fn, meshbox.data)
arrow_loc = np.zeros((stokes.u.coords.shape[0], 3))
arrow_loc[:, 0:2] = stokes.u.coords[...]
arrow_length = np.zeros((stokes.u.coords.shape[0], 3))
arrow_length[:, 0:2] = usol[...]
pl = pv.Plotter()
pl.add_arrows(arrow_loc, arrow_length, mag=0.00001, opacity=0.75)
pl.add_points(
swarm_point_cloud, # cmap="RdYlBu_r", scalars="T1",
color="Black",
render_points_as_spheres=True,
clim=[0.0, 1.0],
point_size=1.0,
opacity=0.5,
)
pl.add_points(
point_cloud,
cmap="coolwarm",
scalars="T",
render_points_as_spheres=False,
clim=[0.0, 1.0],
point_size=10.0,
opacity=0.66,
)
# pl.add_mesh(pvmesh, cmap="coolwarm", edge_color="Black",
# show_edges=True, scalars="T",clim=[0.0,1.0],
# use_transparency=False, opacity=0.5)
pl.remove_scalar_bar("T")
# pl.remove_scalar_bar("T1")
pl.screenshot(
filename="{}.png".format(filename),
window_size=(1250, 1250),
return_img=False,
)
# pl.show()
pl.close()
# Convection model / update in time
expt_name = "output/Ra1e6_swarm_pnots"
ad_delta_t = 0.000033 # target
for step in range(0, 250):
stokes.solve(zero_init_guess=False)
stokes_delta_t = 5.0 * stokes.estimate_dt()
delta_t = stokes_delta_t
ad.solve(timestep=delta_t, zero_init_guess=True)
# update swarm / swarm variables
with swarm.access(T1):
T1.data[:, 0] = uw.function.evaluate(t_soln.fn, swarm.particle_coordinates.data)
# advect swarm
swarm.advection(v_soln.fn, delta_t)
tstats = t_soln.stats()
tstarstats = T1._meshVar.stats()
if uw.mpi.rank == 0:
print("Timestep {}, dt {}".format(step, delta_t))
print(tstats[2], tstats[3])
print(tstarstats[2], tstarstats[3])
plot_T_mesh(filename="{}_step_{}".format(expt_name, step))
# savefile = "{}_ts_{}.h5".format(expt_name,step)
# meshbox.save(savefile)
# v_soln.save(savefile)
# t_soln.save(savefile)
# meshbox.generate_xdmf(savefile)
savefile = “output_conv/convection_cylinder.h5”.format(step) meshbox.save(savefile) v_soln.save(savefile) t_soln.save(savefile) meshbox.generate_xdmf(savefile)
if uw.mpi.size == 1:
import numpy as np
import pyvista as pv
import vtk
pv.global_theme.background = "white"
pv.global_theme.window_size = [750, 750]
pv.global_theme.antialiasing = True
pv.global_theme.jupyter_backend = "trame"
pv.global_theme.smooth_shading = True
pv.start_xvfb()
pvmesh = meshbox.mesh2pyvista(elementType=vtk.VTK_TRIANGLE)
points = np.zeros((t_soln.coords.shape[0], 3))
points[:, 0] = t_soln.coords[:, 0]
points[:, 1] = t_soln.coords[:, 1]
point_cloud = pv.PolyData(points)
with swarm.access():
points = np.zeros((swarm.data.shape[0], 3))
points[:, 0] = swarm.data[:, 0]
points[:, 1] = swarm.data[:, 1]
swarm_point_cloud = pv.PolyData(points)
with swarm.access():
swarm_point_cloud.point_data["T1"] = T1.data.copy()
with meshbox.access():
point_cloud.point_data["T"] = t_soln.data.copy()
with meshbox.access():
usol = stokes.u.data.copy()
pvmesh.point_data["T"] = uw.function.evaluate(t_soln.fn, meshbox.data)
arrow_loc = np.zeros((stokes.u.coords.shape[0], 3))
arrow_loc[:, 0:2] = stokes.u.coords[...]
arrow_length = np.zeros((stokes.u.coords.shape[0], 3))
arrow_length[:, 0:2] = usol[...]
pl = pv.Plotter()
pl.add_arrows(arrow_loc, arrow_length, mag=0.00002, opacity=0.75)
# pl.add_arrows(arrow_loc2, arrow_length2, mag=1.0e-1)
# pl.add_points(point_cloud, cmap="coolwarm",
# render_points_as_spheres=True,
# point_size=7.5, opacity=0.25
# )
pl.add_points(
swarm_point_cloud,
cmap="coolwarm",
render_points_as_spheres=True,
point_size=2.5,
opacity=0.5,
clim=[0.0, 1.0],
)
pl.add_mesh(
pvmesh,
cmap="coolwarm",
edge_color="Black",
show_edges=True,
scalars="T",
use_transparency=False,
opacity=0.5,
clim=[0.0, 1.0],
)
pl.show(cpos="xy")