Thermochemical convection#
We have a thermal convection (advection-diffusion) problem and a material-swarm mediated density variation
# to fix trame issue
import nest_asyncio
nest_asyncio.apply()
import petsc4py
from petsc4py import PETSc
import underworld3 as uw
from underworld3.systems import Stokes
from underworld3 import function
import numpy as np
# options = PETSc.Options()
# options["help"] = None
# options["pc_type"] = "svd"
# options["dm_plex_check_all"] = None
# options.getAll()
meshbox = uw.meshing.UnstructuredSimplexBox(
minCoords=(0.0, 0.0),
maxCoords=(1.0, 1.0),
cellSize=1.0 / 24.0,
regular=False,
)
meshbox.dm.view()
# check the mesh if in a notebook / serial
if uw.mpi.size == 1:
import pyvista as pv
import underworld3.visualisation as vis
pvmesh = vis.mesh_to_pv_mesh(meshbox)
pl = pv.Plotter(window_size=(750, 750))
# pl.add_mesh(pvmesh,'Black', 'wireframe', opacity=0.5)
pl.add_mesh(pvmesh, edge_color="Black", show_edges=True)
pl.show(cpos="xy")
v_soln = uw.discretisation.MeshVariable("U", meshbox, meshbox.dim, degree=2)
p_soln = uw.discretisation.MeshVariable("P", meshbox, 1, degree=1)
t_soln = uw.discretisation.MeshVariable("T", meshbox, 1, degree=3)
t_0 = uw.discretisation.MeshVariable("T0", meshbox, 1, degree=3)
swarm = uw.swarm.Swarm(mesh=meshbox)
Mat = uw.swarm.SwarmVariable("Material", swarm, 1, proxy_degree=3)
X0 = uw.swarm.SwarmVariable("X0", swarm, meshbox.dim, _proxy=False)
swarm.populate(fill_param=5)
# Create Stokes object
stokes = Stokes(
meshbox,
velocityField=v_soln,
pressureField=p_soln,
solver_name="stokes",
verbose=False,
)
# Set solve options here (or remove default values
# stokes.petsc_options.getAll()
stokes.petsc_options.delValue("ksp_monitor")
# Constant visc
stokes.constitutive_model = uw.constitutive_models.ViscousFlowModel
stokes.constitutive_model.Parameters.viscosity = 1
# Velocity boundary conditions
stokes.add_dirichlet_bc((0.0,), "Left", (0,))
stokes.add_dirichlet_bc((0.0,), "Right", (0,))
stokes.add_dirichlet_bc((0.0,), "Top", (1,))
stokes.add_dirichlet_bc((0.0,), "Bottom", (1,))
mMat = uw.discretisation.MeshVariable("mMat", meshbox, 1, degree=2)
projector = uw.systems.solvers.SNES_Projection(meshbox, mMat)
projector.smoothing = 1.0e-3
# Create a density structure / buoyancy force
# gravity will vary linearly from zero at the centre
# of the sphere to (say) 1 at the surface
import sympy
# Some useful coordinate stuff
x = meshbox.N.x
y = meshbox.N.y
# Create adv_diff object
# Set some things
k = 1.0
h = 0.0
r_i = 0.5
r_o = 1.0
adv_diff = uw.systems.AdvDiffusion(
meshbox,
u_Field=t_soln,
V_fn=v_soln,
solver_name="adv_diff",
order=3,
verbose=False,
)
adv_diff.constitutive_model = uw.constitutive_models.DiffusionModel
adv_diff.constitutive_model.Parameters.diffusivity = k
adv_diff.theta = 0.5
adv_diff.add_dirichlet_bc(1.0, "Bottom")
adv_diff.add_dirichlet_bc(0.0, "Top")
# Define T boundary / initial conditions via a sympy function
import sympy
init_t = 0.01 * sympy.sin(5.0 * x) * sympy.sin(np.pi * y) + (1.0 - y)
with meshbox.access(t_0, t_soln):
t_0.data[...] = uw.function.evaluate(init_t, t_0.coords).reshape(-1, 1)
t_soln.data[...] = t_0.data[...]
with swarm.access(Mat):
Mat.data[:, 0] = 0.5 + 0.5 * np.tanh(100.0 * (swarm.data[:, 1] - 0.25))
projector.uw_function = Mat.sym
projector.solve()
expt_name = "output/Ra1e6_Rc5e5"
# +ve Rc means heavy chemical component,
# -ve Rc means light chemical component
# Here we are using the projected mMat field but we
# can switch this out for the particle field
# to show the equivalence
buoyancy_force = 1.0e6 * t_soln.fn + 5.0e5 * mMat.fn
stokes.bodyforce = meshbox.N.j * buoyancy_force
# check the stokes solve is set up and that it converges
stokes.solve()
# Check the diffusion part of the solve converges
adv_diff.solve(timestep=0.01 * stokes.estimate_dt())
# check the mesh if in a notebook / serial
if uw.mpi.size == 1:
import pyvista as pv
import underworld3.visualisation as vis
pvmesh = vis.mesh_to_pv_mesh(meshbox)
pvmesh.point_data["T"] = vis.scalar_fn_to_pv_points(pvmesh, t_soln.sym)
velocity_points = vis.meshVariable_to_pv_cloud(stokes.u)
velocity_points.point_data["V"] = vis.vector_fn_to_pv_points(velocity_points, stokes.u.sym)
pl = pv.Plotter(window_size=(750, 750))
# pl.add_mesh(pvmesh,'Black', 'wireframe')
pl.add_mesh(
pvmesh,
cmap="coolwarm",
edge_color="Black",
show_edges=True,
scalars="T",
use_transparency=False,
opacity=0.5,
)
pl.add_arrows(velocity_points.points, velocity_points.point_data["V"], mag=1.0e-4, opacity=0.5)
# pl.add_arrows(arrow_loc2, arrow_length2, mag=1.0e-1)
# pl.add_points(pdata)
pl.show(cpos="xy")
def plot_T_mesh(filename):
if uw.mpi.size == 1:
import pyvista as pv
import underworld3.visualisation as vis
pvmesh = vis.mesh_to_pv_mesh(meshbox)
pvmesh.point_data["T"] = vis.scalar_fn_to_pv_points(pvmesh, t_soln.sym)
pvmesh.point_data["M"] = vis.scalar_fn_to_pv_points(pvmesh, mMat.sym)
tpoints = vis.meshVariable_to_pv_cloud(t_soln)
tpoints.point_data["T"] = vis.scalar_fn_to_pv_points(tpoints, t_soln.sym)
tpoint_cloud = pv.PolyData(tpoints)
spoints = vis.swarm_to_pv_cloud(swarm)
swarm_point_cloud = pv.PolyData(spoints)
with swarm.access():
swarm_point_cloud.point_data["M"] = Mat.data.copy()
velocity_points = vis.meshVariable_to_pv_cloud(stokes.u)
velocity_points.point_data["V"] = vis.vector_fn_to_pv_points(velocity_points, stokes.u.sym)
pl = pv.Plotter(window_size=(750, 750))
pl.add_arrows(velocity_points.points, velocity_points.point_data["V"], mag=0.00001, opacity=0.75)
# pl.add_points(point_cloud, cmap="gray",
# render_points_as_spheres=False,
# point_size=10, opacity=0.5
# )
pl.add_points(
swarm_point_cloud,
cmap="RdYlBu",
render_points_as_spheres=True,
point_size=7.5,
opacity=1.0,
)
pl.add_mesh(
pvmesh,
cmap="gray",
edge_color="Black",
show_edges=True,
scalars="M",
use_transparency=False,
opacity=0.5,
)
pl.remove_scalar_bar("M")
pl.remove_scalar_bar("mag")
pl.screenshot(
filename="{}.png".format(filename),
window_size=(1280, 1280),
return_img=False,
)
# pl.show()
# Convection model / update in time
for step in range(0, 50):
stokes.solve(zero_init_guess=False)
delta_t = 3.0e-5 # 5.0*stokes.estimate_dt()
adv_diff.solve(timestep=delta_t, zero_init_guess=False)
# update swarm locations using v_soln
swarm.advection(v_soln.fn, delta_t, order=2, corrector=True)
# projector.solve(zero_init_guess=False)
# stats then loop
tstats = t_soln.stats()
if uw.mpi.rank == 0:
print("Timestep {}, dt {}".format(step, delta_t))
# print(tstats)
plot_T_mesh(filename="{}_step_{}".format(expt_name, step))
# savefile = "{}_ts_{}.h5".format(expt_name,step)
# meshbox.save(savefile)
# v_soln.save(savefile)
# t_soln.save(savefile)
# meshbox.generate_xdmf(savefile)
if uw.mpi.size == 1:
import pyvista as pv
import underworld3.visualisation as vis
pvmesh = vis.mesh_to_pv_mesh(meshbox)
pvmesh.point_data["M"] = vis.scalar_fn_to_pv_points(pvmesh, mMat.sym)
tpoints = vis.meshVariable_to_pv_cloud(t_soln)
tpoints.point_data["T"] = vis.scalar_fn_to_pv_points(tpoints, t_soln.sym)
tpoints.point_data["M"] = vis.scalar_fn_to_pv_points(tpoints, mMat.sym)
tpoint_cloud = pv.PolyData(tpoints)
spoints = vis.swarm_to_pv_cloud(swarm)
swarm_point_cloud = pv.PolyData(spoints)
with swarm.access():
swarm_point_cloud.point_data["M"] = Mat.data.copy()
velocity_points = vis.meshVariable_to_pv_cloud(stokes.u)
velocity_points.point_data["V"] = vis.vector_fn_to_pv_points(velocity_points, stokes.u.sym)
pl = pv.Plotter(window_size=(750, 750))
pl.add_arrows(velocity_points.points, velocity_points.point_data["V"], mag=0.75e-5, opacity=0.75)
pl.add_points(
swarm_point_cloud,
cmap="RdYlBu",
render_points_as_spheres=True,
point_size=3.0,
opacity=1.0,
)
pl.add_mesh(
pvmesh,
cmap="gray",
edge_color="Black",
show_edges=True,
scalars="M",
use_transparency=False,
opacity=0.5,
)
# pl.add_mesh(pvmesh,'Black', 'wireframe', opacity=0.75)
pl.show(cpos="xy")