Steady state diffusion in a hollow sphere#
# to fix trame issue
import nest_asyncio
nest_asyncio.apply()
import pygmsh, meshio
from petsc4py import PETSc
import underworld3 as uw
from underworld3.systems import Poisson
import numpy as np
import os
# Define the problem size
# 1 - ultra low res for automatic checking
# 2 - low res problem to play with this notebook
# 3 - medium resolution (be prepared to wait)
# 4 - highest resolution (benchmark case from Spiegelman et al)
problem_size = 1
# For testing and automatic generation of notebook output,
# over-ride the problem size if the UW_TESTING_LEVEL is set
uw_testing_level = os.environ.get("UW_TESTING_LEVEL")
if uw_testing_level:
try:
problem_size = int(uw_testing_level)
except ValueError:
# Accept the default value
pass
# Set some things
k = 1.0
f = 0.0
t_i = 2.0
t_o = 1.0
r_i = 0.5
r_o = 1.0
# %%
from underworld3.meshing import Annulus
# %%
# first do 2D
if problem_size <= 1:
cell_size = 0.05
elif problem_size == 2:
cell_size = 0.02
elif problem_size == 3:
cell_size = 0.01
elif problem_size >= 4:
cell_size = 0.0033
mesh = Annulus(radiusInner=r_i, radiusOuter=r_o, cellSize=cell_size)
t_soln = uw.discretisation.MeshVariable("T", mesh, 1, degree=2)
# Create Poisson object
poisson = Poisson(mesh, u_Field=t_soln)
poisson.constitutive_model = uw.constitutive_models.DiffusionModel
poisson.constitutive_model.Parameters.diffusivity = 1
poisson.f = f
poisson.petsc_options["snes_rtol"] = 1.0e-6
poisson.petsc_options.delValue("ksp_monitor")
poisson.petsc_options.delValue("ksp_rtol")
# %%
mesh.dm.view()
# %%
import sympy
poisson.add_dirichlet_bc(t_i, "Lower", 0)
poisson.add_dirichlet_bc(t_o, "Upper", 0)
# %%
poisson.solve()
# poisson.snes.view()
# %%
# Check. Construct simple solution for above config.
import math
A = (t_i - t_o) / (sympy.log(r_i) - math.log(r_o))
B = t_o - A * sympy.log(r_o)
sol = A * sympy.log(sympy.sqrt(mesh.N.x**2 + mesh.N.y**2)) + B
with mesh.access():
mesh_analytic_soln = uw.function.evaluate(sol, mesh.data, mesh.N)
mesh_numerical_soln = uw.function.evaluate(t_soln.fn, mesh.data, mesh.N)
import numpy as np
if not np.allclose(mesh_analytic_soln, mesh_numerical_soln, rtol=0.01):
raise RuntimeError("Unexpected values encountered.")
# %%
poisson.constitutive_model.Parameters.diffusivity = 1.0 + 0.1 * poisson.u.fn**1.5
poisson.f = 0.01 * poisson.u.sym[0] ** 0.5
poisson.solve(zero_init_guess=False)
Validate
if uw.mpi.size == 1:
import pyvista as pv
import underworld3.visualisation as vis
pvmesh = vis.mesh_to_pv_mesh(mesh)
pvmesh.point_data["T"] = mesh_analytic_soln
pvmesh.point_data["T2"] = mesh_numerical_soln
pvmesh.point_data["DT"] = mesh_analytic_soln - mesh_numerical_soln
pl = pv.Plotter(window_size=(750, 750))
pl.add_mesh(
pvmesh,
cmap="coolwarm",
edge_color="Black",
show_edges=True,
scalars="DT",
use_transparency=False,
opacity=0.5,
)
pl.camera_position = "xy"
pl.show(cpos="xy")
# pl.screenshot(filename="test.png")
# %%
expt_name = "Poisson-Annulus"
outdir = "output"
os.makedirs(f"{outdir}", exist_ok=True)
mesh.write_timestep(
expt_name, meshUpdates=True, meshVars=[t_soln], outputPath=outdir, index=0
)
# savefile = "output/poisson_disc.h5"
# mesh.save(savefile)
# poisson.u.save(savefile)
# mesh.generate_xdmf(savefile)
# %%
from underworld3.meshing import SphericalShell
from underworld3.meshing import SegmentedSphere
# %%
# now do 3D
problem_size = 1
if problem_size <= 1:
cell_size = 0.3
elif problem_size == 1:
cell_size = 0.15
elif problem_size == 2:
cell_size = 0.05
elif problem_size == 3:
cell_size = 0.02
mesh_3d = SphericalShell(
radiusInner=r_i,
radiusOuter=r_o,
cellSize=cell_size,
refinement=1,
)
# mesh_3d = SegmentedSphere(radiusInner=r_i,
# radiusOuter=r_o,
# cellSize=cell_size
# )
t_soln_3d = uw.discretisation.MeshVariable("T", mesh_3d, 1, degree=2)
mesh_3d.dm.view()
# Create Poisson object
poisson = Poisson(mesh_3d, u_Field=t_soln_3d)
poisson.constitutive_model = uw.constitutive_models.DiffusionModel
poisson.constitutive_model.Parameters.diffusivity = k
poisson.f = f
poisson.petsc_options["snes_rtol"] = 1.0e-6
poisson.petsc_options.delValue("ksp_rtol")
import sympy
poisson.add_dirichlet_bc(t_i, "Lower", 0)
poisson.add_dirichlet_bc(t_o, "Upper", 0)
# Solve time
poisson.solve()
Check. Construct simple solution for above config.
A = (t_i - t_o) / (1 / r_i - 1 / r_o)
B = t_o - A / r_o
sol = A / (sympy.sqrt(mesh_3d.N.x**2 + mesh_3d.N.y**2 + mesh_3d.N.z**2)) + B
with mesh.access():
mesh_analytic_soln = uw.function.evaluate(sol, mesh_3d.data, mesh_3d.N)
mesh_numerical_soln = uw.function.evaluate(t_soln_3d.fn, mesh_3d.data, mesh_3d.N)
import numpy as np
if not np.allclose(mesh_analytic_soln, mesh_numerical_soln, rtol=0.1):
raise RuntimeError("Unexpected values encountered.")
Validate
from mpi4py import MPI
if MPI.COMM_WORLD.size == 1:
import pyvista as pv
import underworld3.visualisation as vis
pvmesh = vis.mesh_to_pv_mesh(mesh_3d)
pvmesh.point_data["T"] = mesh_analytic_soln
pvmesh.point_data["T2"] = mesh_numerical_soln
pvmesh.point_data["DT"] = pvmesh.point_data["T"] - pvmesh.point_data["T2"]
clipped = pvmesh.clip(origin=(0.001, 0.0, 0.0), normal=(1, 0, 0), invert=True)
pl = pv.Plotter()
pl.add_mesh(
clipped,
cmap="coolwarm",
edge_color="Grey",
show_edges=True,
scalars="T2",
use_transparency=False,
opacity=1.0,
)
pl.camera_position = "xy"
pl.show(cpos="xy")
# pl.screenshot(filename="test.png")
# %%
expt_name = "Poisson-Sphere"
outdir = "output"
os.makedirs(f"{outdir}", exist_ok=True)
mesh_3d.write_timestep(
expt_name, meshUpdates=True, meshVars=[t_soln_3d], outputPath=outdir, index=0
)