Temperature-dependent viscosity convection, Cartesian Domain(benchmark)

Temperature-dependent viscosity convection, Cartesian Domain(benchmark)#

This is a simple example in which we try to instantiate two solvers on the mesh and have them use a common set of variables.

We set up a v, p, T system in which we will solve for a steady-state T field in response to thermal boundary conditions and then use the steady-state T field to compute a stokes flow in response.

The next step is to add particles at node points and sample back along the streamlines to find values of the T field at a previous time.

(Note, we keep all the pieces from previous increments of this problem to ensure that we don’t break something along the way)

# to fix trame issue
import nest_asyncio
nest_asyncio.apply()
import petsc4py
from petsc4py import PETSc

import underworld3 as uw
from underworld3.systems import Stokes
from underworld3 import function

import numpy as np
import sympy
meshbox = uw.meshing.UnstructuredSimplexBox(
    minCoords=(0.0, 0.0), maxCoords=(1.0, 1.0), cellSize=1.0 / 32.0, qdegree=3
)
v_soln = uw.discretisation.MeshVariable("U", meshbox, meshbox.dim, degree=2)
p_soln = uw.discretisation.MeshVariable("P", meshbox, 1, degree=1, continuous=True)
t_soln = uw.discretisation.MeshVariable("T", meshbox, 1, degree=3)
t_0 = uw.discretisation.MeshVariable("T0", meshbox, 1, degree=3)
# Create Stokes object

stokes = Stokes(
    meshbox,
    velocityField=v_soln,
    pressureField=p_soln,
    solver_name="stokes",
)

# Set solve options here (or remove default values
# stokes.petsc_options.getAll()
# stokes.petsc_options.delValue("ksp_monitor")
# stokes.petsc_options["snes_test_jacobian"] = None

# T dependent visc
log10_delta_eta = 6
delta_eta = 10**log10_delta_eta

stokes.petsc_options["snes_rtol"] = 1 / delta_eta
stokes.petsc_options["snes_atol"] = 0.01  # Based on how the scaling works

viscosity = delta_eta * sympy.exp(-sympy.log(delta_eta) * t_soln.sym[0])
stokes.constitutive_model = uw.constitutive_models.ViscousFlowModel
stokes.constitutive_model.Parameters.viscosity = viscosity
stokes.penalty = 0.0

stokes.saddle_preconditioner = 1.0 / viscosity

# Velocity boundary conditions
stokes.add_dirichlet_bc((0.0,), "Top", (1,))
stokes.add_dirichlet_bc((0.0,), "Bottom", (1,))
stokes.add_dirichlet_bc((0.0,), "Left", (0,))
stokes.add_dirichlet_bc((0.0,), "Right", (0,))
# Create a density structure / buoyancy force
# gravity will vary linearly from zero at the centre
# of the sphere to (say) 1 at the surface

import sympy

# Some useful coordinate stuff

x, y = meshbox.X
# Create adv_diff object

# Set some things
k = 1.0
h = 0.0

adv_diff = uw.systems.AdvDiffusionSLCN(
    meshbox,
    u_Field=t_soln,
    V_fn=v_soln,
    solver_name="adv_diff",
)

adv_diff.constitutive_model = uw.constitutive_models.DiffusionModel
adv_diff.constitutive_model.Parameters.diffusivity = k
adv_diff.theta = 0.5
# Define T boundary conditions via a sympy function

import sympy

init_t = 0.9 * (0.05 * sympy.cos(sympy.pi * x) + sympy.cos(0.5 * np.pi * y)) + 0.05

adv_diff.add_dirichlet_bc(1.0, "Bottom")
adv_diff.add_dirichlet_bc(0.0, "Top")

with meshbox.access(t_0, t_soln):
    t_0.data[...] = uw.function.evaluate(init_t, t_0.coords).reshape(-1, 1)
    t_soln.data[...] = t_0.data[...]
    print(t_0.data.max(), t_0.data.min())
buoyancy_force = 1.0e6 * t_soln.sym[0]
stokes.bodyforce = sympy.Matrix([0, buoyancy_force])
# check the stokes solve is set up and that it converges
stokes.solve(zero_init_guess=True)
# Check the diffusion part of the solve converges
adv_diff.solve(timestep=0.1 * stokes.estimate_dt())
def plot_T_mesh(filename):
    if uw.mpi.size == 1:
        
        import pyvista as pv
        import underworld3.visualisation as vis

        pvmesh =  vis.mesh_to_pv_mesh(meshbox)
        pvmesh.point_data["V"] = vis.vector_fn_to_pv_points(pvmesh, v_soln.sym)/333
        pvmesh.point_data["T"] = vis.scalar_fn_to_pv_points(pvmesh, t_soln.sym)

        # point sources at cell centres
        cpoints = np.zeros((meshbox._centroids[::4, 0].shape[0], 3))
        cpoints[:, 0] = meshbox._centroids[::4, 0]
        cpoints[:, 1] = meshbox._centroids[::4, 1]
        cpoint_cloud = pv.PolyData(cpoints)

        pvstream = pvmesh.streamlines_from_source(
            cpoint_cloud,
            vectors="V",
            integrator_type=45,
            integration_direction="forward",
            compute_vorticity=False,
            max_steps=25,
            surface_streamlines=True,
        )

        points = vis.meshVariable_to_pv_cloud(t_soln)
        points.point_data["T"] = vis.scalar_fn_to_pv_points(points, t_soln.sym)
        point_cloud = pv.PolyData(points)

        ## PLOTTING
        pl = pv.Plotter(window_size=(1000, 750))
        
        pl.add_mesh(
            pvmesh,
            cmap="coolwarm",
            edge_color="Gray",
            show_edges=True,
            scalars="T",
            use_transparency=False,
            opacity=0.5,
        )

        pl.add_points(
            point_cloud,
            cmap="coolwarm",
            render_points_as_spheres=False,
            point_size=10,
            opacity=0.5,
        )

        pl.add_mesh(pvstream, opacity=0.4)

        pl.remove_scalar_bar("T")
        pl.remove_scalar_bar("V")

        pl.screenshot(
            filename="{}.png".format(filename),
            window_size=(1280, 1280),
            return_img=False,
        )
        # pl.show()

        pvmesh.clear_data()
        pvmesh.clear_point_data()
t_step = 0
# Convection model / update in time

##
## There is a strange interaction here between the solvers if the zero_guess is
## set to False
##

expt_name = f"output/Ra1e6_eta1e{log10_delta_eta}"

for step in range(0, 1000):
    stokes.solve(zero_init_guess=False)
    delta_t = 5.0 * stokes.estimate_dt()
    adv_diff.solve(timestep=delta_t, zero_init_guess=True)

    # stats then loop
    tstats = t_soln.stats()

    if uw.mpi.rank == 0:
        print("Timestep {}, dt {}".format(step, delta_t))
    #         print(tstats)

    if t_step % 5 == 0:
        plot_T_mesh(filename="{}_step_{}".format(expt_name, t_step))

    t_step += 1

# savefile = "{}_ts_{}.h5".format(expt_name,step)
# meshbox.save(savefile)
# v_soln.save(savefile)
# t_soln.save(savefile)
# meshbox.generate_xdmf(savefile)

pass

savefile = “output_conv/convection_cylinder.h5”.format(step) meshbox.save(savefile) v_soln.save(savefile) t_soln.save(savefile) meshbox.generate_xdmf(savefile)

if uw.mpi.size == 1:
    
    import pyvista as pv
    import underworld3.visualisation as vis

    pvmesh =  vis.mesh_to_pv_mesh(meshbox)
    pvmesh.point_data["T"] = vis.scalar_fn_to_pv_points(pvmesh, t_soln.sym)

    velocity_points = vis.meshVariable_to_pv_cloud(stokes.u)
    velocity_points.point_data["V"] = vis.vector_fn_to_pv_points(velocity_points, stokes.u.sym)

    points = vis.meshVariable_to_pv_cloud(t_soln)
    points.point_data["T"] = vis.scalar_fn_to_pv_points(points, t_soln.sym)
    point_cloud = pv.PolyData(points)

    pl = pv.Plotter(window_size=(1000, 750))

    pl.add_arrows(velocity_points.points, velocity_points.point_data["V"], mag=0.00001, opacity=0.75)
    # pl.add_arrows(arrow_loc2, arrow_length2, mag=1.0e-1)

    pl.add_points(
        point_cloud,
        cmap="coolwarm",
        render_points_as_spheres=True,
        point_size=7,
        opacity=0.25,
    )

    pl.add_mesh(pvmesh, "Black", "wireframe", opacity=0.75)

    pl.show(cpos="xy")