Diffusion¶
import numpy as np
from quagmire import QuagMesh
from quagmire import tools as meshtools
from quagmire import function as fn
from mpi4py import MPI
import lavavu
import stripy
comm = MPI.COMM_WORLD
import matplotlib.pyplot as plt
from matplotlib import cm
%matplotlib inline
from stripy.cartesian_meshes import elliptical_base_mesh_points
epointsx, epointsy, ebmask = elliptical_base_mesh_points(10.0, 7.5, 0.1, remove_artifacts=True)
emesh = meshtools.elliptical_equispaced_triangulation(10,0.75, 0.1, refinement_levels=0, tree=False, remove_artifacts=True)
import matplotlib.pyplot as plt
fig = plt.figure()
ax = fig.gca()
ax.axes.set_aspect('equal')
ax.scatter(epointsx, epointsy)
ax.scatter(epointsx[~ebmask], epointsy[~ebmask])
dm = meshtools.create_DMPlex_from_points(epointsx, epointsy, bmask=ebmask, refinement_levels=1)
mesh = QuagMesh(dm, downhill_neighbours=2, permute=False)
#if comm.rank == 0:
print("Number of nodes in mesh - {}: {}".format(comm.rank, mesh.npoints))
print("Number of boundary nodes - {}".format(np.count_nonzero(~mesh.bmask)))
# retrieve local mesh
x = mesh.tri.x
y = mesh.tri.y
# dm generated bmask
bmask = mesh.bmask
fig = plt.figure()
ax = fig.gca()
ax.axes.set_aspect('equal')
ax.scatter(x, y)
ax.scatter(x[~bmask], y[~bmask])
plt.show()
import stripy
radial = fn.math.exp(-0.1 * (fn.misc.coord(0)**2.0 + fn.misc.coord(1)**2.0))
sinxy = (fn.math.sin(fn.misc.coord(0)) + fn.math.sin(fn.misc.coord(1)))
height = radial * sinxy
# various fragments
draddx = -0.2 * fn.misc.coord(0) * radial
draddy = -0.2 * fn.misc.coord(1) * radial
d2raddx2 = -0.2 * radial -0.2 * fn.misc.coord(0) * draddx
d2raddy2 = -0.2 * radial -0.2 * fn.misc.coord(1) * draddy
d2raddxdy = -0.2 * fn.misc.coord(0) * draddy
# First derivatives
dhdx_fn = draddx * sinxy + radial * fn.math.cos(fn.misc.coord(0))
dhdy_fn = draddy * sinxy + radial * fn.math.cos(fn.misc.coord(1))
# Second derivatives
dh2dx2_fn = d2raddx2 * sinxy + draddx * fn.math.cos(fn.misc.coord(0)) + draddx * fn.math.cos(fn.misc.coord(0)) - radial * fn.math.sin(fn.misc.coord(0))
dh2dy2_fn = d2raddy2 * sinxy + draddy * fn.math.cos(fn.misc.coord(1)) + draddy * fn.math.cos(fn.misc.coord(1)) - radial * fn.math.sin(fn.misc.coord(1))
dh2dxdy_fn = d2raddxdy * sinxy + draddx * fn.math.cos(fn.misc.coord(1)) + draddy * fn.math.cos(fn.misc.coord(0)) + radial * 0.0
with mesh.deform_topography():
mesh.topography.data = height.evaluate(mesh)
slope = mesh.slope.evaluate(mesh)
import lavavu
import stripy
vertices = np.column_stack([x, y, mesh.topography.data])
tri = mesh.tri
lv = lavavu.Viewer(border=False, background="#FFFFFF", resolution=[600,600], near=-10.0)
# sa = lv.points("subaerial", colour="red", pointsize=0.2, opacity=0.75)
# sa.vertices(vertices[subaerial])
tris = lv.triangles("mesh", wireframe=True, colour="#77ff88", opacity=1.0)
tris.vertices(vertices)
tris.indices(tri.simplices)
tris.values(mesh.topography.data, label="elevation")
#tris.values(shade, label="shade")
tris.colourmap('dem3')
cb = tris.colourbar()
tris2 = lv.triangles("mesh2", wireframe=False, colour="#77ff88", opacity=1.0)
tris2.vertices(vertices)
tris2.indices(tri.simplices)
tris2.values(slope, label="slope")
tris2.colourmap('no_green', range=(0.0,0.5))
cb2 = tris2.colourbar()
lv.control.Panel()
lv.control.ObjectList()
# tris.control.Checkbox(property="wireframe")
lv.control.show()
Let’s try letting this height diffuse with time¶
kappa = fn.parameter(1.0)
dHdX, dHdY = fn.math.grad(mesh.topography)
del2H = fn.math.div(kappa * dHdX, kappa * dHdY)
h_predictor = mesh.add_variable(name="hstar")
dHstardX, dHstardY = fn.math.grad(h_predictor)
del2Hstar = fn.math.div(kappa * dHstardX, kappa * dHstardY)
h = mesh.add_variable(name="h")
dhdX, dhdY = fn.math.grad(h)
del2h = fn.math.div(kappa * dhdX, kappa * dhdY)
delta_t = (0.5 * mesh.area.min() * kappa ** -1.0).evaluate(0.0,0.0)
h.data = mesh.topography.data.copy()
## Comparison:
mesh.tri.update_tension_factors(0.0 * mesh.topography.data, tol=0.0001)
mesh.tri.sigma.min(), mesh.tri.sigma.max(), mesh.tri.sigma.mean()
node = 10000
# V1
dHx, dHy, dHxx, dHxy, dHyy = mesh.tri.second_gradient_local(h.data, node)
dHAx, dHAy = dhdx_fn.evaluate(mesh)[node], dhdy_fn.evaluate(mesh)[node]
# V2
dH1x_fn, dH1y_fn = fn.math.grad(mesh.topography)
dH1dxx_fn, dH1dxy_fn = fn.math.grad(dH1x_fn)
dH1dyx_fn, dH1dyy_fn = fn.math.grad(dH1y_fn)
dH1x = dH1x_fn.evaluate(mesh)[node]
dH1y = dH1y_fn.evaluate(mesh)[node]
dH1xx = dH1dxx_fn.evaluate(mesh)[node]
dH1xy = dH1dxy_fn.evaluate(mesh)[node]
dH1yy = dH1dyy_fn.evaluate(mesh)[node]
# Analytic
dHAxx, dHAxy, dHAyy = dh2dx2_fn.evaluate(mesh)[node], dh2dxdy_fn.evaluate(mesh)[node], dh2dy2_fn.evaluate(mesh)[node]
print("dhdx - {:+8f} | {:+8f} | {:+8f}".format(dHAx, dH1x, dHx))
print("dhdy - {:+8f} | {:+8f} | {:+8f}".format(dHAy, dH1y, dHy))
print("dh2dxx - {:+8f} | {:+8f} | {:+8f}".format(dHAxx, dH1xx, dHxx))
print("dh2dxy - {:+8f} | {:+8f} | {:+8f}".format(dHAxy, dH1xy, dHxy))
print("dh2dyy - {:+8f} | {:+8f} | {:+8f}".format(dHAyy, dH1yy, dHyy))
dHx = np.empty(mesh.npoints)
dHy = np.empty(mesh.npoints)
dHxx = np.empty(mesh.npoints)
dHxy = np.empty(mesh.npoints)
dHyy = np.empty(mesh.npoints)
for i in range(0, mesh.npoints):
dHx[i], dHy[i], dHxx[i], dHxy[i], dHyy[i] = mesh.tri.second_gradient_local(h.data, i)
dH1x = dH1x_fn.evaluate(mesh)
dH1y = dH1y_fn.evaluate(mesh)
dH1xx = dH1dxx_fn.evaluate(mesh)
dH1xy = dH1dxy_fn.evaluate(mesh)
dH1yy = dH1dyy_fn.evaluate(mesh)
dhdx_fn_num = mesh.add_variable(name="dhdx_num")
dhdx_fn_num.data = dhdx_fn.evaluate(mesh)
print(dhdx_fn_num.gradient()[0])
print(dhdx_fn_num.gradient()[1])
dhdy_fn_num = mesh.add_variable(name="dhdy_num")
dhdy_fn_num.data = dhdy_fn.evaluate(mesh)
print(dhdy_fn_num.gradient()[1])
mesh.tri._permutation
import lavavu
import stripy
vertices = np.column_stack([x, y, s])
tri = mesh.tri
lv = lavavu.Viewer(border=False, background="#FFFFFF", resolution=[600,600], near=-10.0)
# sa = lv.points("subaerial", colour="red", pointsize=0.2, opacity=0.75)
# sa.vertices(vertices[subaerial])
tris = lv.triangles("mesh", wireframe=False, colour="#77ff88", opacity=1.0)
tris.vertices(vertices)
tris.indices(tri.simplices)
tris.values(dsdx-dhdx_fn.evaluate(mesh), label="elevation")
#tris.values(shade, label="shade")
tris.colourmap('Blues')
cb = tris.colourbar()
lv.control.Panel()
lv.control.ObjectList()
# tris.control.Checkbox(property="wireframe")
lv.control.show()
3=1
h.data = mesh.topography.data.copy()
for step in range(0,50):
if step%10 == 0:
print("Step {}".format(step))
h_predictor.data = del2h.evaluate(mesh) * 0.5 * delta_t + h.data
h.data = h.data + del2Hstar.evaluate(mesh) * delta_t * mesh.bmask
print(h.data.min(), h.data.max())
print(mesh.topography.data.min(), mesh.topography.data.max())
# with mesh.deform_topography():
# mesh.topography.data = h.data
import lavavu
import stripy
vertices = np.column_stack([x, y, h.data])
tri = mesh.tri
lv = lavavu.Viewer(border=False, background="#FFFFFF", resolution=[600,600], near=-10.0)
# sa = lv.points("subaerial", colour="red", pointsize=0.2, opacity=0.75)
# sa.vertices(vertices[subaerial])
tris = lv.triangles("mesh", wireframe=False, colour="#77ff88", opacity=1.0)
tris.vertices(vertices)
tris.indices(tri.simplices)
tris.values(del2Hstar.evaluate(mesh), label="elevation")
#tris.values(shade, label="shade")
tris.colourmap('Blues')
cb = tris.colourbar()
lv.control.Panel()
lv.control.ObjectList()
# tris.control.Checkbox(property="wireframe")
lv.control.show()
import lavavu
import stripy
vertices = np.column_stack([x, y, mesh.topography.data])
tri = mesh.tri
lv = lavavu.Viewer(border=False, background="#FFFFFF", resolution=[600,600], near=-10.0)
tris = lv.triangles("mesh", wireframe=False, colour="#77ff88", opacity=1.0)
tris.vertices(vertices)
tris.indices(tri.simplices)
# tris.values(mesh.topography.data, label="elevation")
# tris.values(slope, label="slope")
tris.values(del2H.evaluate(mesh), label="del2")
tris.colourmap('no_green')
cb = tris.colourbar()
lv.control.Panel()
lv.control.ObjectList()
# tris.control.Checkbox(property="wireframe")
lv.control.show()
import time as systime
walltime = systime.clock()
typical_l = np.sqrt(sp.area)
# running_average_uparea = sp.cumulative_flow(sp.area * sp.rainfall_pattern_Variable.data)
for step in range(0,steps):
delta = height-sp.heightVariable.data
efficiency = 0.01
###############################
## Compute erosion / deposition
###############################
slope = np.minimum(sp.slopeVariable.data, critical_slope)
stream_power = compute_stream_power(sp, m=1, n=1, critical_slope=critical_slope)
erosion_rate, deposition_rate = erosion_deposition_1(sp, stream_power, efficiency=0.1,
critical_slope=critical_slope)
erosion_deposition_rate = erosion_rate - deposition_rate
erosion_timestep = ((slope + lowest_slope) * typical_l / (np.abs(erosion_rate)+0.000001)).min()
deposition_timestep = ((slope + lowest_slope) * typical_l / (np.abs(deposition_rate)+0.000001)).min()
################
## Diffusion
################
diffDz, diff_timestep = sp.landscape_diffusion_critical_slope(kappa, critical_slope, True)
## Mid-point method. Update the height and use this to estimate the new rates of
## Change. Note that we have to assume that the flow pattern doesn't change for this
## to work. This means we can't call the methods which do a full update !
timestep = min(erosion_timestep, deposition_timestep, diff_timestep)
time = time + timestep
viz_time = viz_time + timestep
# Height predictor step (at half time)
height0 = sp.heightVariable.data.copy()
sp.heightVariable.data -= 0.5 * timestep * (erosion_deposition_rate - diffDz )
sp.heightVariable.data = np.clip(sp.heightVariable.data, base, 1.0e99)
# Deal with internal drainages (again !)
sp.heightVariable.data = sp.low_points_local_flood_fill()
gradZx, gradZy = sp.derivative_grad(sp.heightVariable.data)
sp.slope = np.hypot(gradZx,gradZy)
# Recalculate based on mid-point values
erosion_rate, deposition_rate = erosion_deposition_1(sp, stream_power, efficiency=0.1,
critical_slope=critical_slope)
erosion_deposition_rate = erosion_rate - deposition_rate
erosion_timestep = ((slope + lowest_slope) * typical_l / (np.abs(erosion_rate)+0.000001)).min()
deposition_timestep = ((slope + lowest_slope) * typical_l / (np.abs(deposition_rate)+0.000001)).min()
diffDz, diff_timestep = sp.landscape_diffusion_critical_slope(kappa, critical_slope, True)
timestep = min(erosion_timestep, deposition_timestep, diff_timestep)
# Now take the full timestep
height0 -= timestep * (erosion_deposition_rate - diffDz )
sp.heightVariable.data = np.clip(height0, base, 1.0e9)
sp.heightVariable.data = sp.low_points_local_flood_fill()
sp.update_height(sp.heightVariable.data)
# sp.update_surface_processes(rain, np.zeros_like(rain))
running_average_uparea = 0.5 * running_average_uparea + 0.5 * sp.cumulative_flow(sp.area * sp.rainfall_pattern_Variable.data)
if totalSteps%10 == 0:
print("{:04d} - ".format(totalSteps), \
" dt - {:.5f} ({:.5f}, {:.5f}, {:.5f})".format(timestep, diff_timestep, erosion_timestep, deposition_timestep), \
" time - {:.4f}".format(time), \
" Max slope - {:.3f}".format(sp.slope.max()), \
" Step walltime - {:.3f}".format(systime.clock()-walltime))
# Store data
if( viz_time > 0.1 or step==0):
viz_time = 0.0
vizzes = vizzes + 1
delta = height-sp.height
smoothHeight = sp.local_area_smoothing(sp.height, its=2, centre_weight=0.75)
if step == 0:
sp.save_mesh_to_hdf5("{}-Mesh".format(experiment_name))
sp.save_field_to_hdf5("{}-Data-{:f}".format(experiment_name, totalSteps),
bmask=sp.bmask,
height=sp.height,
deltah=delta,
upflow=running_average_uparea, erosion=erosion_deposition_rate)
## Loop again
totalSteps += 1
3=1
from quagmire.tools.cloud import quagmire_cloud_fs
quagmire_cloud_fs
quagmire_cloud_fs.listdir("/")
# from quagmire.tools.cloud import cloud_download, cloud_upload
# cloud_download('global_OC_8.4_topography.h5', "gtopo3.h5")
quagmire_cloud_fs.listdir('/global')
dm = meshtools.create_DMPlex_from_cloud_fs("global/global_OC_8.4_mesh.h5")
mesh = QuagMesh(dm, downhill_neighbours=2)
# Mark up the shadow zones
rank = np.ones((mesh.npoints,))*comm.rank
shadow = np.zeros((mesh.npoints,))
# get shadow zones
shadow_zones = mesh.lgmap_row.indices < 0
shadow[shadow_zones] = 1
shadow_vec = mesh.gvec.duplicate()
mesh.lvec.setArray(shadow)
mesh.dm.localToGlobal(mesh.lvec, shadow_vec, addv=True)
rawheight = mesh.add_variable(name="height", locked=False)
rainfall = mesh.add_variable(name="rain", locked=False)
runoff_var = mesh.add_variable(name="runoff", locked=False)
print("{} mesh points".format(mesh.npoints))
with mesh.deform_topography():
mesh.topography.load_from_cloud_fs("global/global_OC_8.4_topography.h5")
low_points = mesh.identify_low_points(ref_height=6.37)
low_points.shape
rainfall.data = 0.0
rainfall.load_from_cloud_fs("global/global_OC_8.4_rainfall.h5", quagmire_cloud_fs)
rainfall.data
runoff_var.data = 0.0
runoff_var.load_from_cloud_fs("global/global_OC_8.4_runoff.h5", quagmire_cloud_fs)
runoff_var.data
# # runoff "/thredds/wcs/agg_terraclimate_q_1958_CurrentYear_GLOBE.nc"
# from owslib.wcs import WebCoverageService
# # import gdal
# url = "http://thredds.northwestknowledge.net:8080/thredds/wcs/agg_terraclimate_ppt_1958_CurrentYear_GLOBE.nc"
# wcs = WebCoverageService(url, version='1.0.0')
# for layer in list(wcs.contents):
# print("Layer Name:", layer)
# print("Title:", wcs[layer].title, '\n')
# output = wcs.getCoverage(identifier=layer,
# service="WCS", bbox=[-180, -90, 180, 90],
# resx = 1800.0 / 3600.0, resy = 1800.0 / 3600.0,
# format='geotiff')
# with open("GlobalRainfall.tif", "wb") as f:
# f.write(output.read())
# # Read it back and reduce the size of the array
# url = "http://thredds.northwestknowledge.net:8080/thredds/wcs/agg_terraclimate_q_1958_CurrentYear_GLOBE.nc"
# wcs = WebCoverageService(url, version='1.0.0')
# for layer in list(wcs.contents):
# print("Layer Name:", layer)
# print("Title:", wcs[layer].title, '\n')
# output = wcs.getCoverage(identifier=layer,
# service="WCS", bbox=[-180, -90, 180, 90],
# resx = 1800.0 / 3600.0, resy = 1800.0 / 3600.0,
# format='geotiff')
# with open("GlobalRunoff.tif", "wb") as f:
# f.write(output.read())
# import imageio
# rain = imageio.imread("GlobalRainfall.tif")[::3,::3].astype(float)
# runoff = imageio.imread("GlobalRunoff.tif")[::3,::3].astype(float)
# [cols, rows] = rain.shape
# print([cols,rows])
# rlons = np.linspace(-180,180, rows)
# rlats = np.linspace(-180,180, cols)
# rx,ry = np.meshgrid(rlons.data, rlats.data)
# rainfall.data = np.maximum(0.0,meshtools.map_global_raster_to_strimesh(mesh, rain[::-1,:]))
# runoff_var.data = np.maximum(0.0,meshtools.map_global_raster_to_strimesh(mesh, runoff[::-1,:]))
# coastline = cfeature.NaturalEarthFeature('physical', 'coastline', '10m',
# edgecolor=(1.0,0.8,0.0),
# facecolor="none")
# ocean = cfeature.NaturalEarthFeature('physical', 'ocean', '10m',
# edgecolor="green",
# facecolor="blue")
# lakes = cfeature.NaturalEarthFeature('physical', 'lakes', '10m',
# edgecolor="green",
# facecolor="blue")
# rivers = cfeature.NaturalEarthFeature('physical', 'rivers_lake_centerlines', '10m',
# edgecolor="green",
# facecolor="blue")
# map_extent = ( -180, 180, -90, 90 )
# plt.figure(figsize=(15, 10))
# ax = plt.subplot(111, projection=ccrs.PlateCarree())
# ax.set_extent(map_extent)
# ax.add_feature(coastline, edgecolor="black", linewidth=0.5, zorder=3)
# ax.add_feature(lakes, edgecolor="black", linewidth=1, zorder=3)
# ax.add_feature(rivers , edgecolor="black", facecolor="none", linewidth=1, zorder=3)
# plt.imshow(rain, extent=map_extent, transform=ccrs.PlateCarree(),
# cmap='Greens', origin='upper', vmin=0., vmax=50.)
latitudes_in_radians = mesh.tri.lats
longitudes_in_radians = mesh.tri.lons
latitudes_in_degrees = np.degrees(latitudes_in_radians)
longitudes_in_degrees = np.degrees(longitudes_in_radians)
map_extent = ( -180, 180, -90, 90 )
plt.figure(figsize=(15, 10))
ax = plt.subplot(111, projection=ccrs.PlateCarree())
ax.set_extent(map_extent)
ax.add_feature(coastline, edgecolor="black", linewidth=0.5, zorder=3)
ax.add_feature(lakes, edgecolor="black", linewidth=1, zorder=3)
ax.add_feature(rivers , edgecolor="black", facecolor="none", linewidth=1, zorder=3)
plt.scatter(x=longitudes_in_degrees, y=latitudes_in_degrees, c=rainfall.data, transform=ccrs.PlateCarree(),
cmap='Greens', vmin=0., vmax=50.)
from quagmire import function as fn
ones = fn.parameter(1.0, mesh=mesh)
cumulative_flow_0 = np.log10(1.0e-20 + mesh.upstream_integral_fn(runoff_var).evaluate(mesh))
cumulative_flow_0[mesh.topography.data < 6.37] = 0.0
cumulative_area = np.log10(1.0e-20 + mesh.upstream_integral_fn(ones).evaluate(mesh))
cumulative_area[mesh.topography.data < 6.37] = 0.0
import lavavu
import stripy
# vertices0 = mesh.tri.points*mesh_height.reshape(-1,1)
vertices = mesh.tri.points*mesh.topography.data.reshape(-1,1)
tri = mesh.tri
lv = lavavu.Viewer(border=False, axis=False, background="#FFFFFF", resolution=[1000,1000], near=-20.0)
lows = lv.points("lows", colour="red", pointsize=5.0, opacity=0.75)
lows.vertices(vertices[low_points])
flowball = lv.points("flowballs", pointsize=1.5, colour="rgb(50,50,100)", opacity=0.25)
flowball.vertices(vertices*1.001)
flowball.values(np.maximum(0.0,cumulative_flow_0-11.0), label="flows")
flowball["sizeby"]="flows"
ghostball = lv.points("ghostballs", colour="rgb(50,50,50)", pointsize=0.5, opacity=0.2)
ghostball.vertices(vertices*1.001)
ghostball.values(np.maximum(0.0,cumulative_area-8.0), label="areas")
ghostball["sizeby"]="areas"
heightball = lv.points("heightballs", pointsize=1.0, opacity=1.0)
heightball.vertices(vertices)
heightball.values(mesh.topography.data, label="height")
heightball.values((mesh.topography.data > 6.370).astype(float), label="land")
heightball.colourmap('geo', range=(6.363,6.377)) # This is a good choice of colourmap and range to make the coastlines work and the Earth look nice
heightball["sizeby"]="land"
tris = lv.triangles("mesh", wireframe=False, colour="#77ff88", opacity=1.0)
tris.vertices(vertices*0.999)
tris.indices(tri.simplices)
tris.values(mesh.topography.data, label="elevation")
tris.colourmap('#999999 #222222', range=(6.363,6.377)) # This is a good choice of colourmap and range to make the coastlines work and the Earth look nice
# lv.translation(-1.012, 2.245, -13.352)
# lv.rotation(53.217, 18.104, 161.927)
lv.control.Panel()
lv.control.ObjectList()
lv.control.show()