Example 4 - stripy
gradients on the sphere#
SSRFPACK is a Fortran 77 software package that constructs a smooth interpolatory or approximating surface to data values associated with arbitrarily distributed points on the surface of a sphere. It employs automatically selected tension factors to preserve shape properties of the data and avoid overshoot and undershoot associated with steep gradients.
Notebook contents#
The next example is Ex5-Smoothing
Define a computational mesh#
Use the (usual) icosahedron with face points included.
import stripy as stripy
mesh = stripy.spherical_meshes.icosahedral_mesh(refinement_levels=4, include_face_points=True)
print(mesh.npoints)
7682
Analytic function#
Define a relatively smooth function that we can interpolate from the coarse mesh to the fine mesh and analyse
import numpy as np
def analytic(lons, lats, k1, k2):
return np.cos(k1*lons) * np.sin(k2*lats)
def analytic_ddlon(lons, lats, k1, k2):
return -k1 * np.sin(k1*lons) * np.sin(k2*lats) / np.cos(lats)
def analytic_ddlat(lons, lats, k1, k2):
return k2 * np.cos(k1*lons) * np.cos(k2*lats)
analytic_sol = analytic(mesh.lons, mesh.lats, 5.0, 2.0)
analytic_sol_ddlon = analytic_ddlon(mesh.lons, mesh.lats, 5.0, 2.0)
analytic_sol_ddlat = analytic_ddlat(mesh.lons, mesh.lats, 5.0, 2.0)
%matplotlib inline
import cartopy
import cartopy.crs as ccrs
import matplotlib.pyplot as plt
fig = plt.figure(figsize=(10, 10), facecolor="none")
ax = plt.subplot(111, projection=ccrs.Orthographic(central_longitude=0.0, central_latitude=0.0, globe=None))
ax.coastlines(color="lightgrey")
ax.set_global()
lons0 = np.degrees(mesh.lons)
lats0 = np.degrees(mesh.lats)
ax.scatter(lons0, lats0,
marker="o", s=10.0, transform=ccrs.PlateCarree(), c=analytic_sol, cmap=plt.cm.RdBu)
pass
---------------------------------------------------------------------------
ModuleNotFoundError Traceback (most recent call last)
Cell In[3], line 1
----> 1 get_ipython().run_line_magic('matplotlib', 'inline')
3 import cartopy
4 import cartopy.crs as ccrs
File ~/.local/lib/python3.12/site-packages/IPython/core/interactiveshell.py:2482, in InteractiveShell.run_line_magic(self, magic_name, line, _stack_depth)
2480 kwargs['local_ns'] = self.get_local_scope(stack_depth)
2481 with self.builtin_trap:
-> 2482 result = fn(*args, **kwargs)
2484 # The code below prevents the output from being displayed
2485 # when using magics with decorator @output_can_be_silenced
2486 # when the last Python token in the expression is a ';'.
2487 if getattr(fn, magic.MAGIC_OUTPUT_CAN_BE_SILENCED, False):
File ~/.local/lib/python3.12/site-packages/IPython/core/magics/pylab.py:103, in PylabMagics.matplotlib(self, line)
98 print(
99 "Available matplotlib backends: %s"
100 % _list_matplotlib_backends_and_gui_loops()
101 )
102 else:
--> 103 gui, backend = self.shell.enable_matplotlib(args.gui)
104 self._show_matplotlib_backend(args.gui, backend)
File ~/.local/lib/python3.12/site-packages/IPython/core/interactiveshell.py:3667, in InteractiveShell.enable_matplotlib(self, gui)
3664 import matplotlib_inline.backend_inline
3666 from IPython.core import pylabtools as pt
-> 3667 gui, backend = pt.find_gui_and_backend(gui, self.pylab_gui_select)
3669 if gui != None:
3670 # If we have our first gui selection, store it
3671 if self.pylab_gui_select is None:
File ~/.local/lib/python3.12/site-packages/IPython/core/pylabtools.py:338, in find_gui_and_backend(gui, gui_select)
321 def find_gui_and_backend(gui=None, gui_select=None):
322 """Given a gui string return the gui and mpl backend.
323
324 Parameters
(...)
335 'WXAgg','Qt4Agg','module://matplotlib_inline.backend_inline','agg').
336 """
--> 338 import matplotlib
340 if _matplotlib_manages_backends():
341 backend_registry = matplotlib.backends.registry.backend_registry
ModuleNotFoundError: No module named 'matplotlib'
Derivatives of solution compared to analytic values#
The gradient_lonlat
method of the sTriangulation takes a data array reprenting values on the mesh vertices and returns the lon and lat derivatives. There is an equivalent gradient_xyz
method which returns the raw derivatives in Cartesian form. Although this is generally less useful, if you are computing the slope (for example) that can be computed in either coordinate system and may cross the pole, consider using the Cartesian form.
stripy_ddlon, stripy_ddlat = mesh.gradient_lonlat(analytic_sol)
import k3d
plot = k3d.plot(camera_auto_fit=False, grid_visible=False,
menu_visibility=True, axes_helper=False )
indices = mesh.simplices.astype(np.uint32)
points = np.column_stack(mesh.points.T).astype(np.float32)
mesh_viewer = k3d.mesh(points, indices, wireframe=False, attribute=analytic_sol,
color_map=k3d.colormaps.basic_color_maps.CoolWarm,
name="original",
flat_shading=False, opacity=1.0 )
plot += mesh_viewer
plot += k3d.points(points, point_size=0.01,color=0x779977)
plot.display()
## ## ##
from ipywidgets import interact, interactive
import ipywidgets as widgets
choices = { "analytic": analytic_sol,
"stripy ddlon": stripy_ddlon,
"stripy ddlat": stripy_ddlat,
"error ddlon": stripy_ddlon-analytic_sol_ddlon,
"error ddlat": stripy_ddlat-analytic_sol_ddlat }
@interact(choice=choices.keys())
def chooser(choice):
mesh_viewer.attribute = choices[choice].astype(np.float32)
range = np.sqrt((choices[choice]**2).mean()) * 0.5
mesh_viewer.color_range = [-range, range]
return
---------------------------------------------------------------------------
ModuleNotFoundError Traceback (most recent call last)
Cell In[5], line 1
----> 1 import k3d
2 plot = k3d.plot(camera_auto_fit=False, grid_visible=False,
3 menu_visibility=True, axes_helper=False )
5 indices = mesh.simplices.astype(np.uint32)
ModuleNotFoundError: No module named 'k3d'
The next example is Ex5-Smoothing